H(x)=-x^2+x+6

Simple and best practice solution for H(x)=-x^2+x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(x)=-x^2+x+6 equation:



(H)=-H^2+H+6
We move all terms to the left:
(H)-(-H^2+H+6)=0
We get rid of parentheses
H^2-H+H-6=0
We add all the numbers together, and all the variables
H^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $

See similar equations:

| 4/15y+5/6y+1/2=8/5 | | x+x^2+42=0 | | 4x-2+X-3x=5+x | | 2x-x^2-x=0 | | 4x-2+x-3x=5+3 | | 4x-5=7x=10 | | .5+h+2=2 | | 18+3x+x^=0 | | 5x+4=20× | | 1/2*h+2=2 | | 6x-x+2x=10 | | 3-x+x+x=9 | | 6x-x+x+x=9 | | 3x+4=2(x1) | | 2x+10=-6x+55 | | 2x+3=3/4 | | 3(2t-5)+7=t-4 | | 3(2+-5)+7=t-4 | | 10*0.009=n | | 12+x=4x/5 | | 4(y+2)=7(2y-1) | | 7x+4=135 | | 2.3y+3.2-y=+2.1+1.3y+1.1 | | 4x+12=20+x | | y=-4(3/8)+2 | | 2700=y*0,6 | | (x+4)x(x-1)=104 | | -2x+38=x+11 | | 152-x=204 | | 10x+6–3x=8 | | F(x)=0,5x | | 6=3y+4y×y |

Equations solver categories